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Abstract
The recent creation of pure Bose–Einstein condensates in alkali metals and
also of vortices supported by them has increased interest in these phenomena.
In particular, changes observed in the topology of these vortices is a partially
unsolved problem. Here we confirm Feynman’s hypothesis on how circular
vortices can be created from oppositely polarized pairs of linear vortices. This
is done by following the transformation numerically. The circular vortices so
obtained satisfy known constraining relations between radii and velocities.

1. Introduction

Recently Bose–Einstein condensates (BECs) have been created in alkali metals [1]. This fact
has renewed interest in various phenomena observed in these media. The changes observed
in the topology of superfluid helium vortices have intrigued people for some time now [2].
Now pure BEC vortices pose similar questions. These vortices either extend from wall to
wall, however tangled they may be in between, or else they can be roughly circular and freely
move around the superfluid [2]. Some time ago, Feynman [3] postulated that two oppositely
polarized line vortices could, if they cross at two points, reconnect so as to create a circular
vortex that snaps off and subsequently lives a life of its own. This is often simply postulated in
numerical experiments, e.g. [2, 4]. That an opposite line vortex pair solution of the nonlinear
Schrödinger equation (NLS) for a BEC is unstable has been demonstrated theoretically [5].
Reconnection at a point has been obtained numerically [6]. What remained to prove was that
a known, stationary, double vortex line solution can thus reproduce a member of the one-
parameter solitonic family of solutions for circular vortices as found for NLS [7]. In other
words, can this reconnection really lead to a full confirmation of Feynman’s hypothesis? Our
first step was a similar changeover calculation for a limiting case, unfortunately such that
the vortex configuration was degenerate [8, 9]. However, a surprisingly complete dynamic
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changeover from cylindrical to spherical symmetry of the soliton was observed in [8]. This
augured well for the present effort.

Both a pure BEC, and also an imperfect Bose condensate such as He II, can be described by
a single-particle wavefunction ψ(x, t) of N bosons of mass m that obeys the NLS, according
to Gross, Pitaevski and Ginzburg:

ih̄
∂ψ

∂ t
= − h̄2

2m
∇2ψ + W0ψ|ψ|2. (1)

Here W0 characterizes the potential between bosons. Opposite vortex pair solutions, as well
as those describing circular vortices, are known [7]. Each solution has a unique velocity
perpendicular to the vortex plane. However, to answer the crucial question of whether dynamics
can lead from the former to the latter kind, we must resort to numerics. All theory tells us is that
the double line vortex configuration is unstable [5]. What develops is by no means obvious,
as one could imagine the two vortices drawing together and annihilating. This, however, will
be seen not to be the case.

Before giving the results of our simulations, we wish to point out that a preliminary idea
of the problem can be gained from the linear version of equation (1), W0 = 0. At a vortex,
ψ = 0, so the cubic term not contributing locally might not be too surprising. However, the
extent of global similarities with solutions to equation (1) may be more so. The preliminary
results will help us appreciate just what the role of the nonlinear, W0 > 0, term is in the act of
reconnection.

One can easily check by substitution that equation (1), W0 = 0, is solved by

ψ = constant

[
a2 − x2 + ib

(
z(t) +

h̄t

mb

)]
ei(kz z−h̄k2

z t)/(2m), z(t) = z − h̄kz

m
t, b > 0.

(2)

Vortices are situated where both Reψ and Imψ are zero. They constitute two oppositely
polarized lines along y at x = ±a and move together at velocity Uz = h̄(kz − b−1)/m. As
we see, there is no correlation between the separation, 2a, and the uniform velocity Uz , which
can in fact have either sense.

A second solution to equation (1), W0 = 0, is given by [10]1:

ψ = constant

[
R2 − x2 − y2 + id

(
z(t) +

2h̄

md
t

)]
ei(kz z−h̄k2

z t)/(2m), z(t) = z − h̄kz

m
t . (3)

A circular vortex at x2 + y2 = R2 is now moving up z at velocity Uz = h̄(kz − 2d−1)/m.
Again, there is no connection between R and the uniform velocity, or even with its sense.

2. Known stationary solutions

Jones and Roberts [7] found both a class of stationary, double line vortex solutions to (1),
W0 > 0, as well as circular ones. Correlations between a, R and corresponding Uz were given
in two tables. Otherwise, the similarities between their solutions with the above are at first
surprising, especially if we choose the velocities in (2) and (3) such as to mimic those of Jones
and Roberts. The role of the nonlinear term would then ostensibly be limited to ensuring that
|ψ| tend to a uniform value in the far field. However, there is a less obvious difference. Even
if we perturbed (2) such that two vortices touched at two points, say by adding a cos(ky y) to
x initially, a circular vortex would not be produced at any t > 0.

1 This paper inspired our solution (2).



Theoretical confirmation of Feynman’s hypothesis 5867

Further calculations will be compared with the solutions of Jones and Roberts. Therefore
we cast equation (1) in dimensionless form such that we can use their tables (here E is the
average energy level per unit mass of a boson):

ψ → e−imEt/h̄ψ, x → h̄√
2Em

x, t → h̄

2m E
t, (4)

so finally ψ → √
(m E/W0)ψ . The unit of length so defined is known as the healing length.

(Linear models will match the temporal dependence if kz = √
2Em/h̄.) Now

2i
∂ψ

∂ t
= −∇2ψ − ψ(1 − |ψ|2). (5)

If we write ψ = ρ1/2eiS , then ρ and v = ∇S have a fluid interpretation. The variables
ρ and v so defined satisfy the usual continuity equation, but due to the nonlinear term, the
Newtonian equation has a rather strange pressure tensor [7]. This may explain the possibility
of reconnection. Importantly, if we encircle a ψ = 0 line once, S must increase by ±2nπ so
that ψ is single valued. This was the case for (2) and (3), where n = 1 (unless a = 0 in (2),
in which case n = 0). The n > 1 case will be treated in a later paper.

3. Linear to circular vortices

At infinity, |ψ| → 1 and this must be included in our initial conditions describing the pair of
line vortices.

As initial condition, we took a two-vortex configuration in which the separation and
velocity were taken from Jones and Roberts [7], table 2. Thus

ψ(t = 0) = r1r2√
r2

1 + b2
√

r2
2 + b2

ei(θ1+θ2), (6)

where

r2
1 = (1 − 2U 2)(x + a)2 + z2, r2

2 = (1 − 2U 2)(x − a)2 + z2,

tan θ1,2 = z√
1 − 2U 2(a ± x)

.

In spite of the scaling of x , following from the asymptotics of equation (5), [7], θi still increases
or decreases by 2π when a vortex is encircled once. Note that |ψ| → 1 in the far field. The
constant b was chosen such that the subsequent velocity along z in the simulation would agree
with that in the formula (we know from Fetter’s and improved solutions [11] that b → 2 as
a → ∞ and U → 0). Initially we took U = 0.3 and a = 1.75 from [7], table 2, assuming
periodic boundary conditions. Next our initial condition was perturbed along cyclic y and
the dynamic development was followed from equation (4), figure 1. The circular vortex of
figure 1(left) was obtained. Its radius and velocity agree with those predicted by Jones and
Roberts. The circular vortex moved forward with uniform velocity and negligible change
of shape, thus confirming that it is indeed a Jones and Roberts’ solution to a high degree of
accuracy. We repeated the calculation for different initial conditions, always obtaining viable
circular vortex solutions, see figure 2. For large R, where the tables of Jones and Roberts
no longer extend, we can use the approximate formula derived by Roberts and Grant for
comparison [12]:

U = 1

2R
[ln(8R)− 0.615]. (7)

See section 5 for numerical details.
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Figure 1. (Left) Three stages in a Feynman transformation of two perturbed line vortices into a
circular vortex in a BEC, as follows from the NLS equation. Densities on the vortex axes are zero,
and on the two indicated surfaces are 0.935 and 0.97. Lengths are in units of the healing length.
The times of the three frames are 0, 7.1 and 169. (Right) Two-dimensional blow-ups of the top
reconnection region, 14 healing lengths up from the origin. The slice has been chosen so as to
include the crossover point. The density of the outermost contour is 0.1. Times are 0, 13 and 169.

(This figure is in colour only in the electronic version)
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Figure 2. Our numerically obtained circular vortices (circles) as compared to those of Jones and
Roberts [7], table 1 (full curve) and those of Roberts and Grant for large R [12], our equation (7)
(broken curve) in R,U space.

4. Conclusions of the simulations

The two curves merge extremely smoothly in figure 2 and the circles corresponding to numerical
results all lie on or very near one or the other. Thus, Feynman’s hypothesis is confirmed,
completing the tentative steps of [6, 8]. Of course, this confirmation is only as conclusive as
the NLS model is for a Bose gas, but which is nevertheless known to be a very successful
model. With the above reservation, the experimentally found abundance of circular vortices
in superfluid He II is now explained theoretically. The proximity at two points of two opposite
line vortices in so tangled a web is quite commonplace [2]. Both vortex lines and circles have
also been created in pure BECs [13].

The generation of vortex rings due to the helical instability of vortex lines is also of primary
interest in superconductivity theory [14, 15]. Perhaps our experience could be useful there,
though unfortunately the equations are more complicated (in the Ginzburg–Landau model,
the vector potential A appears in an extension of (1). An additional vector equation relates
A and ψ).

5. Numerics

The algorithm was leapfrog as improved by Fornberg and Whitham [16]. One can show that
this algorithm is marginally stable for sufficiently small time steps [17]. For example, our time
step when producing figures 1 and 2 was 1.4 × 10−2, a factor of five smaller than the critical
value for stability following from the theory of [17]. The number of grid points was 36 for x ,



5870 E Infeld and A Senatorski

32 for y and 128 for z. So, to check the sensitivity to the number of grid points independently,
we increased it threefold and next halved it in a further simulation. In neither case did we
observe any significant difference as compared to the original simulation. We never reduced
to a number of grid points that would cause a difference in the dynamics.
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